1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// Copyright 2024 Ulvetanna Inc.

use super::{additive_ntt::AdditiveNTT, error::Error, twiddle::TwiddleAccess};
use crate::twiddle::{expand_subspace_evals, OnTheFlyTwiddleAccess, PrecomputedTwiddleAccess};
use binius_field::{BinaryField, PackedField, PackedFieldIndexable};
use std::marker::PhantomData;

/// Implementation of `AdditiveNTT` that performs the computation single-threaded.
#[derive(Debug)]
pub struct SingleThreadedNTT<F: BinaryField, TA: TwiddleAccess<F> = OnTheFlyTwiddleAccess<F>> {
	pub(super) s_evals: Vec<TA>,
	_marker: PhantomData<F>,
}

impl<F: BinaryField> SingleThreadedNTT<F> {
	/// Default constructor constructs an NTT over the canonical subspace for the field using
	/// on-the-fly computed twiddle factors.
	pub fn new(log_domain_size: usize) -> Result<Self, Error> {
		Self::with_domain_field::<F>(log_domain_size)
	}

	/// Constructs an NTT over an isomorphic subspace for the given domain field using on-the-fly
	/// computed twiddle factors.
	pub fn with_domain_field<DomainField: BinaryField + Into<F>>(
		log_domain_size: usize,
	) -> Result<Self, Error> {
		let twiddle_access = OnTheFlyTwiddleAccess::generate::<DomainField>(log_domain_size)?;
		Ok(Self::with_twiddle_access(twiddle_access))
	}

	pub fn precompute_twiddles(&self) -> SingleThreadedNTT<F, PrecomputedTwiddleAccess<F>> {
		SingleThreadedNTT::with_twiddle_access(expand_subspace_evals(&self.s_evals))
	}
}

impl<F: BinaryField, TA: TwiddleAccess<F>> SingleThreadedNTT<F, TA> {
	pub fn with_twiddle_access(twiddle_access: Vec<TA>) -> Self {
		Self {
			s_evals: twiddle_access,
			_marker: PhantomData,
		}
	}

	/// Base-2 logarithm of the size of the NTT domain.
	pub fn log_domain_size(&self) -> usize {
		self.s_evals.len()
	}

	/// Get the normalized subspace polynomial evaluation $\hat{W}_i(\beta_j)$.
	///
	/// ## Preconditions
	///
	/// * `i` must be less than `self.log_domain_size()`
	/// * `j` must be less than `self.log_domain_size() - i`
	pub fn get_subspace_eval(&self, i: usize, j: usize) -> F {
		self.s_evals[i].get(j)
	}
}

impl<F: BinaryField, TA: TwiddleAccess<F>> SingleThreadedNTT<F, TA> {
	pub fn twiddles(&self) -> &[TA] {
		&self.s_evals
	}
}

impl<F, TA: TwiddleAccess<F>, P> AdditiveNTT<P> for SingleThreadedNTT<F, TA>
where
	F: BinaryField,
	TA: TwiddleAccess<F>,
	P: PackedFieldIndexable<Scalar = F>,
{
	fn log_domain_size(&self) -> usize {
		self.log_domain_size()
	}

	fn get_subspace_eval(&self, i: usize, j: usize) -> F {
		self.get_subspace_eval(i, j)
	}

	fn forward_transform(
		&self,
		data: &mut [P],
		coset: u32,
		log_batch_size: usize,
	) -> Result<(), Error> {
		forward_transform(self.log_domain_size(), &self.s_evals, data, coset, log_batch_size)
	}

	fn inverse_transform(
		&self,
		data: &mut [P],
		coset: u32,
		log_batch_size: usize,
	) -> Result<(), Error> {
		inverse_transform(self.log_domain_size(), &self.s_evals, data, coset, log_batch_size)
	}
}

#[derive(Debug)]
pub struct NTTParams {
	pub log_n: usize,
	pub log_w: usize,
}

pub fn forward_transform<F: BinaryField, P: PackedFieldIndexable<Scalar = F>>(
	log_domain_size: usize,
	s_evals: &[impl TwiddleAccess<F>],
	data: &mut [P],
	coset: u32,
	log_batch_size: usize,
) -> Result<(), Error> {
	match data.len() {
		0 => return Ok(()),
		1 => {
			return match P::WIDTH {
				1 => Ok(()),
				_ => forward_transform(
					log_domain_size,
					s_evals,
					P::unpack_scalars_mut(data),
					coset,
					log_batch_size,
				),
			};
		}
		_ => {}
	};

	let log_b = log_batch_size;

	let NTTParams { log_n, log_w } =
		check_batch_transform_inputs(log_domain_size, data, coset, log_b)?;

	// Cutoff is the stage of the NTT where each the butterfly units are contained within
	// packed base field elements.
	let cutoff = log_w.saturating_sub(log_b);

	for i in (cutoff..log_n).rev() {
		let coset_twiddle = s_evals[i].coset(log_domain_size - log_n, coset as usize);

		for j in 0..1 << (log_n - 1 - i) {
			let twiddle = P::broadcast(coset_twiddle.get(j));
			for k in 0..1 << (i + log_b - log_w) {
				let idx0 = j << (i + log_b - log_w + 1) | k;
				let idx1 = idx0 | 1 << (i + log_b - log_w);
				data[idx0] += data[idx1] * twiddle;
				data[idx1] += data[idx0];
			}
		}
	}

	for i in (0..cutoff).rev() {
		let coset_twiddle = s_evals[i].coset(log_domain_size - log_n, coset as usize);

		// A block is a block of butterfly units that all have the same twiddle factor. Since we
		// are below the cutoff round, the block length is less than the packing width, and
		// therefore each packed multiplication is with a non-uniform twiddle. Since the subspace
		// polynomials are linear, we can calculate an additive factor that can be added to the
		// packed twiddles for all packed butterfly units.
		let log_block_len = i + log_b;
		let block_twiddle = calculate_twiddle::<P>(
			s_evals[i].coset(log_domain_size - 1 - cutoff, 0),
			log_block_len,
		);

		for j in 0..1 << (log_n - 1 - cutoff) {
			let twiddle = P::broadcast(coset_twiddle.get(j << (cutoff - i))) + block_twiddle;
			let (mut u, mut v) = data[j << 1].interleave(data[j << 1 | 1], log_block_len);
			u += v * twiddle;
			v += u;
			(data[j << 1], data[j << 1 | 1]) = u.interleave(v, log_block_len);
		}
	}

	Ok(())
}

pub fn inverse_transform<F: BinaryField, P: PackedFieldIndexable<Scalar = F>>(
	log_domain_size: usize,
	s_evals: &[impl TwiddleAccess<F>],
	data: &mut [P],
	coset: u32,
	log_batch_size: usize,
) -> Result<(), Error> {
	match data.len() {
		0 => return Ok(()),
		1 => {
			return match P::WIDTH {
				1 => Ok(()),
				_ => inverse_transform(
					log_domain_size,
					s_evals,
					P::unpack_scalars_mut(data),
					coset,
					log_batch_size,
				),
			};
		}
		_ => {}
	};

	let log_b = log_batch_size;

	let NTTParams { log_n, log_w } =
		check_batch_transform_inputs(log_domain_size, data, coset, log_b)?;

	// Cutoff is the stage of the NTT where each the butterfly units are contained within
	// packed base field elements.
	let cutoff = log_w.saturating_sub(log_b);

	#[allow(clippy::needless_range_loop)]
	for i in 0..cutoff {
		let coset_twiddle = s_evals[i].coset(log_domain_size - log_n, coset as usize);

		// A block is a block of butterfly units that all have the same twiddle factor. Since we
		// are below the cutoff round, the block length is less than the packing width, and
		// therefore each packed multiplication is with a non-uniform twiddle. Since the subspace
		// polynomials are linear, we can calculate an additive factor that can be added to the
		// packed twiddles for all packed butterfly units.
		let log_block_len = i + log_b;
		let block_twiddle = calculate_twiddle::<P>(
			s_evals[i].coset(log_domain_size - 1 - cutoff, 0),
			log_block_len,
		);

		for j in 0..1 << (log_n - 1 - cutoff) {
			let twiddle = P::broadcast(coset_twiddle.get(j << (cutoff - i))) + block_twiddle;
			let (mut u, mut v) = data[j << 1].interleave(data[j << 1 | 1], log_block_len);
			v += u;
			u += v * twiddle;
			(data[j << 1], data[j << 1 | 1]) = u.interleave(v, log_block_len);
		}
	}

	#[allow(clippy::needless_range_loop)]
	for i in cutoff..log_n {
		let coset_twiddle = s_evals[i].coset(log_domain_size - log_n, coset as usize);

		for j in 0..1 << (log_n - 1 - i) {
			let twiddle = P::broadcast(coset_twiddle.get(j));
			for k in 0..1 << (i + log_b - log_w) {
				let idx0 = j << (i + log_b - log_w + 1) | k;
				let idx1 = idx0 | 1 << (i + log_b - log_w);
				data[idx1] += data[idx0];
				data[idx0] += data[idx1] * twiddle;
			}
		}
	}

	Ok(())
}

pub fn check_batch_transform_inputs<PB: PackedField>(
	log_domain_size: usize,
	data: &[PB],
	coset: u32,
	log_batch_size: usize,
) -> Result<NTTParams, Error> {
	if !data.len().is_power_of_two() {
		return Err(Error::PowerOfTwoLengthRequired);
	}
	if !PB::WIDTH.is_power_of_two() {
		return Err(Error::PackingWidthMustDivideDimension);
	}

	let n = (data.len() * PB::WIDTH) >> log_batch_size;
	if n == 0 {
		return Err(Error::BatchTooLarge);
	}

	let log_n = n.trailing_zeros() as usize;
	let log_w = PB::WIDTH.trailing_zeros() as usize;

	let coset_bits = 32 - coset.leading_zeros() as usize;
	if log_n + coset_bits > log_domain_size {
		return Err(Error::DomainTooSmall {
			log_required_domain_size: log_n + coset_bits,
		});
	}

	Ok(NTTParams { log_n, log_w })
}

#[inline]
fn calculate_twiddle<P>(s_evals: impl TwiddleAccess<P::Scalar>, log_block_len: usize) -> P
where
	P: PackedField<Scalar: BinaryField>,
{
	let log_blocks_count = P::LOG_WIDTH - log_block_len - 1;

	let mut twiddle = P::default();
	for k in 0..1 << log_blocks_count {
		let (subblock_twiddle_0, subblock_twiddle_1) = s_evals.get_pair(log_blocks_count, k);
		let idx0 = k << (log_block_len + 1);
		let idx1 = idx0 | 1 << log_block_len;

		for l in 0..1 << log_block_len {
			twiddle.set(idx0 | l, subblock_twiddle_0);
			twiddle.set(idx1 | l, subblock_twiddle_1);
		}
	}
	twiddle
}

#[cfg(test)]
mod tests {
	use super::*;
	use assert_matches::assert_matches;
	use binius_field::BinaryField8b;

	#[test]
	fn test_additive_ntt_fails_with_field_too_small() {
		assert_matches!(
			SingleThreadedNTT::<BinaryField8b>::new(10),
			Err(Error::FieldTooSmall {
				log_domain_size: 10
			})
		);
	}

	// TODO: Write test that compares polynomial evaluation via additive NTT with naive Lagrange
	// polynomial interpolation. A randomized test should suffice for larger NTT sizes.
}