binius_macros/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// Copyright 2024-2025 Irreducible Inc.

extern crate proc_macro;
mod arith_circuit_poly;
mod arith_expr;
mod composition_poly;

use std::collections::BTreeSet;

use proc_macro::TokenStream;
use quote::{quote, ToTokens};
use syn::{parse_macro_input, Data, DeriveInput, Fields};

use crate::{
	arith_circuit_poly::ArithCircuitPolyItem, arith_expr::ArithExprItem,
	composition_poly::CompositionPolyItem,
};

/// Useful for concisely creating structs that implement CompositionPolyOS.
/// This currently only supports creating composition polynomials of tower level 0.
///
/// ```
/// use binius_macros::composition_poly;
/// use binius_math::CompositionPolyOS;
/// use binius_field::{Field, BinaryField1b as F};
///
/// // Defines named struct without any fields that implements CompositionPolyOS
/// composition_poly!(MyComposition[x, y, z] = x + y * z);
/// assert_eq!(
///     MyComposition.evaluate(&[F::ONE, F::ONE, F::ONE]).unwrap(),
///     F::ZERO
/// );
///
/// // If you omit the name you get an anonymous instance instead, which can be used inline
/// assert_eq!(
///     composition_poly!([x, y, z] = x + y * z)
///         .evaluate(&[F::ONE, F::ONE, F::ONE]).unwrap(),
///     F::ZERO
/// );
/// ```
#[proc_macro]
pub fn composition_poly(input: TokenStream) -> TokenStream {
	parse_macro_input!(input as CompositionPolyItem)
		.into_token_stream()
		.into()
}

/// Define polynomial expressions compactly using named positional arguments
///
/// ```
/// use binius_macros::arith_expr;
/// use binius_field::{Field, BinaryField1b, BinaryField8b};
/// use binius_math::ArithExpr as Expr;
///
/// assert_eq!(
///     arith_expr!([x, y] = x + y + 1),
///     Expr::Var(0) + Expr::Var(1) + Expr::Const(BinaryField1b::ONE)
/// );
///
/// assert_eq!(
///     arith_expr!(BinaryField8b[x] = 3*x + 15),
///     Expr::Const(BinaryField8b::new(3)) * Expr::Var(0) + Expr::Const(BinaryField8b::new(15))
/// );
/// ```
#[proc_macro]
pub fn arith_expr(input: TokenStream) -> TokenStream {
	parse_macro_input!(input as ArithExprItem)
		.into_token_stream()
		.into()
}

#[proc_macro]
pub fn arith_circuit_poly(input: TokenStream) -> TokenStream {
	parse_macro_input!(input as ArithCircuitPolyItem)
		.into_token_stream()
		.into()
}

/// Implements `pub fn iter_oracles(&self) -> impl Iterator<Item = OracleId>`.
///
/// Detects and includes fields with type `OracleId`, `[OracleId; N]`
///
/// ```
/// use binius_macros::IterOracles;
/// type OracleId = usize;
/// type BatchId = usize;
///
/// #[derive(IterOracles)]
/// struct Oracle {
///     x: OracleId,
///     y: [OracleId; 5],
///     z: [OracleId; 5*2],
///     ignored_field1: usize,
///     ignored_field2: BatchId,
///     ignored_field3: [[OracleId; 5]; 2],
/// }
/// ```
#[proc_macro_derive(IterOracles)]
pub fn iter_oracle_derive(input: TokenStream) -> TokenStream {
	let input = parse_macro_input!(input as DeriveInput);
	let Data::Struct(data) = &input.data else {
		panic!("#[derive(IterOracles)] is only defined for structs with named fields");
	};
	let Fields::Named(fields) = &data.fields else {
		panic!("#[derive(IterOracles)] is only defined for structs with named fields");
	};

	let name = &input.ident;
	let (impl_generics, ty_generics, where_clause) = &input.generics.split_for_impl();

	let oracles = fields
		.named
		.iter()
		.filter_map(|f| {
			let name = f.ident.clone();
			match &f.ty {
				syn::Type::Path(type_path) if type_path.path.is_ident("OracleId") => {
					Some(quote!(std::iter::once(self.#name)))
				}
				syn::Type::Array(array) => {
					if let syn::Type::Path(type_path) = *array.elem.clone() {
						type_path
							.path
							.is_ident("OracleId")
							.then(|| quote!(self.#name.into_iter()))
					} else {
						None
					}
				}
				_ => None,
			}
		})
		.collect::<Vec<_>>();

	quote! {
		impl #impl_generics #name #ty_generics #where_clause {
			pub fn iter_oracles(&self) -> impl Iterator<Item = OracleId> {
				std::iter::empty()
					#(.chain(#oracles))*
			}
		}
	}
	.into()
}

/// Implements `pub fn iter_polys(&self) -> impl Iterator<Item = MultilinearExtension<P>>`.
///
/// Supports `Vec<P>`, `[Vec<P>; N]`. Currently doesn't filter out fields from the struct, so you can't add any other fields.
///
/// ```
/// use binius_macros::IterPolys;
/// use binius_field::PackedField;
///
/// #[derive(IterPolys)]
/// struct Witness<P: PackedField> {
///     x: Vec<P>,
///     y: [Vec<P>; 5],
///     z: [Vec<P>; 5*2],
/// }
/// ```
#[proc_macro_derive(IterPolys)]
pub fn iter_witness_derive(input: TokenStream) -> TokenStream {
	let input = parse_macro_input!(input as DeriveInput);
	let Data::Struct(data) = &input.data else {
		panic!("#[derive(IterPolys)] is only defined for structs with named fields");
	};
	let Fields::Named(fields) = &data.fields else {
		panic!("#[derive(IterPolys)] is only defined for structs with named fields");
	};

	let name = &input.ident;
	let witnesses = fields
		.named
		.iter()
		.map(|f| {
			let name = f.ident.clone();
			match &f.ty {
				syn::Type::Array(_) => quote!(self.#name.iter()),
				_ => quote!(std::iter::once(&self.#name)),
			}
		})
		.collect::<Vec<_>>();

	let packed_field_vars = generic_vars_with_trait(&input.generics, "PackedField");
	assert_eq!(packed_field_vars.len(), 1, "Only a single packed field is supported for now");
	let p = packed_field_vars.first();
	let (impl_generics, ty_generics, where_clause) = &input.generics.split_for_impl();
	quote! {
		impl #impl_generics #name #ty_generics #where_clause {
			pub fn iter_polys(&self) -> impl Iterator<Item = binius_math::MultilinearExtension<#p, &[#p]>> {
				std::iter::empty()
					#(.chain(#witnesses))*
					.map(|values| binius_math::MultilinearExtension::from_values_slice(values.as_slice()).unwrap())
			}
		}
	}
	.into()
}

/// This will accept the generics definition of a struct (relevant for derive macros),
/// and return all the generic vars that are constrained by a specific trait identifier.
/// ```
/// use binius_field::{PackedField, Field};
/// struct Example<A: PackedField, B: PackedField + Field, C: Field>(A, B, C);
/// ```
/// In the above example, when matching against the trait_name "PackedField",
/// the identifiers A and B will be returned, but not C
pub(crate) fn generic_vars_with_trait(
	vars: &syn::Generics,
	trait_name: &str,
) -> BTreeSet<syn::Ident> {
	vars.params
		.iter()
		.filter_map(|param| match param {
			syn::GenericParam::Type(type_param) => {
				let is_bounded_by_trait_name = type_param.bounds.iter().any(|bound| match bound {
					syn::TypeParamBound::Trait(trait_bound) => {
						if let Some(last_segment) = trait_bound.path.segments.last() {
							last_segment.ident == trait_name
						} else {
							false
						}
					}
					_ => false,
				});
				is_bounded_by_trait_name.then(|| type_param.ident.clone())
			}
			syn::GenericParam::Const(_) | syn::GenericParam::Lifetime(_) => None,
		})
		.collect()
}