1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
// Copyright 2024 Ulvetanna Inc.

//! This module contains helpers to create bivariate sumcheck instances originating from:
//!  * products with shift indicators (shifted virtual polynomials)
//!  * products with tower basis (packed virtual polynomials)
//!  * products with equality indicator ([`CommittedEvalClaim`])
//!
//! All of them have common traits:
//!  * they are always a product of two multilins (composition polynomial is `BivariateProduct`)
//!  * one multilin (the multiplier) is transparent (`shift_ind`, `eq_ind`, or tower basis)
//!  * other multilin is a projection of one of the evalcheck claim multilins to its first variables

use super::{
	error::Error,
	evalcheck::{BatchCommittedEvalClaims, CommittedEvalClaim},
};
use crate::{
	composition::BivariateProduct,
	oracle::{
		CompositePolyOracle, Error as OracleError, MultilinearOracleSet, OracleId, Packed,
		ProjectionVariant, ShiftVariant, Shifted,
	},
	polynomial::{MultilinearComposite, MultilinearPoly, MultilinearQuery, MultivariatePoly},
	protocols::sumcheck::SumcheckClaim,
	transparent::{
		eq_ind::EqIndPartialEval, shift_ind::ShiftIndPartialEval, tower_basis::TowerBasis,
	},
	witness::{MultilinearExtensionIndex, MultilinearWitness},
};
use binius_field::{
	as_packed_field::PackScalar, underlier::WithUnderlier, Field, PackedField,
	PackedFieldIndexable, TowerField,
};
use binius_hal::ComputationBackend;
use binius_utils::bail;
use std::sync::Arc;
use tracing::instrument;

// type aliases for bivariate claims/witnesses and their pairs to shorten type signatures
pub type BivariateSumcheck<'a, F, PW> = (SumcheckClaim<F>, BivariateSumcheckWitness<'a, PW>);
pub type BivariateSumcheckWitness<'a, PW> =
	MultilinearComposite<PW, BivariateProduct, MultilinearWitness<'a, PW>>;

// type alias for the simple linear map used to deduplicate transparent polynomials
pub type MemoizedTransparentPolynomials<K> = Vec<(K, OracleId)>;

/// Create oracles for the bivariate product of an inner oracle with shift indicator.
///
/// Projects to first `block_size()` vars.
/// Returns metadata object with oracle identifiers. Pass this object to:
///  - [`projected_bivariate_claim`] to obtain sumcheck claim
///  - [`shifted_sumcheck_witness`] to obtain sumcheck witness
pub fn shifted_sumcheck_meta<F: TowerField>(
	oracles: &mut MultilinearOracleSet<F>,
	shifted: &Shifted<F>,
	eval_point: &[F],
	shift_ind_memo: Option<&mut MemoizedTransparentPolynomials<(usize, ShiftVariant, Vec<F>)>>,
) -> Result<ProjectedBivariateMeta, Error> {
	projected_bivariate_meta(
		oracles,
		shifted.inner().id(),
		shifted.block_size(),
		eval_point,
		shift_ind_memo,
		|projected_eval_point| {
			(shifted.shift_offset(), shifted.shift_variant(), projected_eval_point.to_vec())
		},
		|projected_eval_point| {
			Ok(ShiftIndPartialEval::new(
				shifted.block_size(),
				shifted.shift_offset(),
				shifted.shift_variant(),
				projected_eval_point.to_vec(),
			)?)
		},
	)
}

/// Takes in metadata object and creates a witness for a bivariate claim on shift indicator.
///
/// `wf_eval_point` should be isomorphic to `eval_point` in `shifted_sumcheck_meta`.
pub fn shifted_sumcheck_witness<'a, F, PW, Backend>(
	witness_index: &mut MultilinearExtensionIndex<'a, PW::Underlier, PW::Scalar>,
	memoized_queries: &mut MemoizedQueries<PW, Backend>,
	meta: ProjectedBivariateMeta,
	shifted: &Shifted<F>,
	wf_eval_point: &[PW::Scalar],
	backend: Backend,
) -> Result<BivariateSumcheckWitness<'a, PW>, Error>
where
	F: Field,
	PW: PackedFieldIndexable + WithUnderlier,
	PW::Scalar: TowerField,
	PW::Underlier: PackScalar<PW::Scalar, Packed = PW>,
	Backend: ComputationBackend,
{
	projected_bivariate_witness(
		witness_index,
		memoized_queries,
		meta,
		wf_eval_point,
		|projected_eval_point| {
			let shift_ind = ShiftIndPartialEval::new(
				projected_eval_point.len(),
				shifted.shift_offset(),
				shifted.shift_variant(),
				projected_eval_point.to_vec(),
			)?;

			Ok(shift_ind
				.multilinear_extension::<PW>()?
				.specialize_arc_dyn())
		},
		backend,
	)
}

/// Create oracles for the bivariate product of an inner oracle with the tower basis.
///
/// Projects to first `log_degree()` vars.
/// Returns metadata object with oracle identifiers. Pass this object to:
///  - [`projected_bivariate_claim`] to obtain sumcheck claim
///  - [`packed_sumcheck_witness`] to obtain sumcheck witness
pub fn packed_sumcheck_meta<F: TowerField>(
	oracles: &mut MultilinearOracleSet<F>,
	packed: &Packed<F>,
	eval_point: &[F],
) -> Result<ProjectedBivariateMeta, Error> {
	let n_vars = packed.inner().n_vars();
	let log_degree = packed.log_degree();
	let binary_tower_level = packed.inner().binary_tower_level();

	if log_degree > n_vars {
		bail!(OracleError::NotEnoughVarsForPacking { n_vars, log_degree });
	}

	// NB. projected_n_vars = 0 because eval_point length is log_degree less than inner n_vars
	projected_bivariate_meta(
		oracles,
		packed.inner().id(),
		0,
		eval_point,
		None,
		|_| (),
		|_| Ok(TowerBasis::new(log_degree, binary_tower_level)?),
	)
}

/// Takes in metadata object and creates a witness for a bivariate claim on tower basis.
///
/// `wf_eval_point` should be isomorphic to `eval_point` in `shifted_sumcheck_meta`.
pub fn packed_sumcheck_witness<'a, F, PW, Backend>(
	witness_index: &mut MultilinearExtensionIndex<'a, PW::Underlier, PW::Scalar>,
	memoized_queries: &mut MemoizedQueries<PW, Backend>,
	meta: ProjectedBivariateMeta,
	packed: &Packed<F>,
	wf_eval_point: &[PW::Scalar],
	backend: Backend,
) -> Result<BivariateSumcheckWitness<'a, PW>, Error>
where
	F: Field,
	PW: PackedFieldIndexable + WithUnderlier,
	PW::Scalar: TowerField,
	PW::Underlier: PackScalar<PW::Scalar, Packed = PW>,
	Backend: ComputationBackend,
{
	let log_degree = packed.log_degree();
	let binary_tower_level = packed.inner().binary_tower_level();

	projected_bivariate_witness(
		witness_index,
		memoized_queries,
		meta,
		wf_eval_point,
		|_projected_eval_point| {
			let tower_basis = TowerBasis::new(log_degree, binary_tower_level)?;
			Ok(tower_basis
				.multilinear_extension::<PW>()?
				.specialize_arc_dyn())
		},
		backend,
	)
}

#[derive(Clone)]
pub struct NonSameQueryPcsClaimMeta<F> {
	projected_bivariate_meta: ProjectedBivariateMeta,
	eval_point: Vec<F>,
	eval: F,
}

/// Create sumchecks for committed evalcheck claims on differing eval points.
///
/// Each sumcheck instance is bivariate product of a column projection and equality indicator.
/// Common suffix is optimized out, degenerate zero variable sumchecks are not emitted, and
/// PCS claims are inserted directly into [`BatchCommittedEvalClaims`] instead.
#[allow(clippy::type_complexity)]
pub fn non_same_query_pcs_sumcheck_metas<F: TowerField>(
	oracles: &mut MultilinearOracleSet<F>,
	committed_eval_claims: &[CommittedEvalClaim<F>],
	new_batch_committed_eval_claims: &mut BatchCommittedEvalClaims<F>,
	mut eq_ind_memo: Option<&mut MemoizedTransparentPolynomials<Vec<F>>>,
) -> Result<Vec<NonSameQueryPcsClaimMeta<F>>, Error> {
	let common_suffix_len = compute_common_suffix_len(
		committed_eval_claims
			.iter()
			.map(|claim| claim.eval_point.as_slice()),
	);

	let mut metas = Vec::new();

	for claim in committed_eval_claims {
		let eval_point = &claim.eval_point;
		debug_assert!(eval_point.len() >= common_suffix_len);

		if eval_point.len() == common_suffix_len {
			new_batch_committed_eval_claims.insert(claim.clone());
			continue;
		}

		let projected_bivariate_meta = projected_bivariate_meta(
			oracles,
			oracles.committed_oracle_id(claim.id),
			eval_point.len() - common_suffix_len,
			eval_point,
			eq_ind_memo.as_deref_mut(),
			|projected_eval_point| projected_eval_point.to_vec(),
			|projected_eval_point| {
				Ok(EqIndPartialEval::new(
					projected_eval_point.len(),
					projected_eval_point.to_vec(),
				)?)
			},
		)?;

		let meta = NonSameQueryPcsClaimMeta {
			projected_bivariate_meta,
			eval_point: eval_point.to_vec(),
			eval: claim.eval,
		};

		metas.push(meta);
	}

	Ok(metas)
}

fn compute_common_suffix_len<'a, F: PartialEq + 'a>(
	mut eval_points: impl Iterator<Item = &'a [F]>,
) -> usize {
	if let Some(first_eval_point) = eval_points.next() {
		let common_suffix = first_eval_point.iter().rev().collect::<Vec<_>>();
		let common_suffix = eval_points.fold(common_suffix, |common_suffix, eval_point| {
			eval_point
				.iter()
				.rev()
				.zip(common_suffix)
				.take_while(|(a, b)| a == b)
				.unzip::<_, _, Vec<_>, Vec<_>>()
				.0
		});
		common_suffix.len()
	} else {
		0
	}
}

pub fn non_same_query_pcs_sumcheck_claim<F: TowerField>(
	oracles: &MultilinearOracleSet<F>,
	meta: NonSameQueryPcsClaimMeta<F>,
) -> Result<SumcheckClaim<F>, Error> {
	projected_bivariate_claim(oracles, meta.projected_bivariate_meta, meta.eval)
}

pub fn non_same_query_pcs_sumcheck_witness<'a, F, PW, Backend>(
	witness_index: &mut MultilinearExtensionIndex<'a, PW::Underlier, PW::Scalar>,
	memoized_queries: &mut MemoizedQueries<PW, Backend>,
	meta: NonSameQueryPcsClaimMeta<F>,
	backend: Backend,
) -> Result<BivariateSumcheckWitness<'a, PW>, Error>
where
	F: Field + From<PW::Scalar>,
	PW: PackedField + WithUnderlier,
	PW::Scalar: From<F> + TowerField,
	PW::Underlier: PackScalar<PW::Scalar, Packed = PW>,
	Backend: ComputationBackend,
{
	let wf_eval_point = meta
		.eval_point
		.into_iter()
		.map(Into::into)
		.collect::<Vec<_>>();

	projected_bivariate_witness(
		witness_index,
		memoized_queries,
		meta.projected_bivariate_meta,
		&wf_eval_point,
		|projected_eval_point| {
			let eq_ind =
				EqIndPartialEval::new(projected_eval_point.len(), projected_eval_point.to_vec())?;

			Ok(eq_ind
				.multilinear_extension::<PW, _>(backend.clone())?
				.specialize_arc_dyn())
		},
		backend.clone(),
	)
}

#[derive(Clone, Copy)]
pub struct ProjectedBivariateMeta {
	inner_id: OracleId,
	projected_id: Option<OracleId>,
	multiplier_id: OracleId,
	projected_n_vars: usize,
}

fn projected_bivariate_meta<F: TowerField, T: MultivariatePoly<F> + 'static, K: PartialEq>(
	oracles: &mut MultilinearOracleSet<F>,
	inner_id: OracleId,
	projected_n_vars: usize,
	eval_point: &[F],
	mut multiplier_memo: Option<&mut MemoizedTransparentPolynomials<K>>,
	multiplier_memo_key: impl FnOnce(&[F]) -> K,
	multiplier_transparent_ctr: impl FnOnce(&[F]) -> Result<T, Error>,
) -> Result<ProjectedBivariateMeta, Error> {
	let inner = oracles.oracle(inner_id);

	let (projected_eval_point, projected_id) = if projected_n_vars < inner.n_vars() {
		let projected_id = oracles.add_projected(
			inner_id,
			eval_point[projected_n_vars..].to_vec(),
			ProjectionVariant::LastVars,
		)?;

		(&eval_point[..projected_n_vars], Some(projected_id))
	} else {
		(eval_point, None)
	};

	let projected_n_vars = projected_eval_point.len();
	let memo_key = multiplier_memo_key(projected_eval_point);

	let opt_multiplier_id = multiplier_memo
		.as_ref()
		.and_then(|memo| {
			memo.iter()
				.find(|(other_memo_key, _)| other_memo_key == &memo_key)
		})
		.map(|(_, oracle_id)| *oracle_id);

	let multiplier_id = if let Some(multiplier_id) = opt_multiplier_id {
		multiplier_id
	} else {
		let multiplier_id =
			oracles.add_transparent(multiplier_transparent_ctr(projected_eval_point)?)?;

		if let Some(memo) = multiplier_memo.as_mut() {
			memo.push((memo_key, multiplier_id));
		}
		multiplier_id
	};

	let meta = ProjectedBivariateMeta {
		inner_id,
		projected_id,
		multiplier_id,
		projected_n_vars,
	};

	Ok(meta)
}

/// Take in projected bivariate metadata and produce a sumcheck claim.
pub fn projected_bivariate_claim<F: TowerField>(
	oracles: &MultilinearOracleSet<F>,
	meta: ProjectedBivariateMeta,
	eval: F,
) -> Result<SumcheckClaim<F>, Error> {
	let ProjectedBivariateMeta {
		multiplier_id,
		inner_id,
		projected_id,
		..
	} = meta;

	let inner = oracles.oracle(projected_id.unwrap_or(inner_id));
	let multiplier = oracles.oracle(multiplier_id);

	let product =
		CompositePolyOracle::new(multiplier.n_vars(), vec![inner, multiplier], BivariateProduct)?;

	let sumcheck_claim = SumcheckClaim {
		poly: product,
		sum: eval,
	};

	Ok(sumcheck_claim)
}

fn projected_bivariate_witness<'a, PW, Backend>(
	witness_index: &mut MultilinearExtensionIndex<'a, PW::Underlier, PW::Scalar>,
	memoized_queries: &mut MemoizedQueries<PW, Backend>,
	meta: ProjectedBivariateMeta,
	wf_eval_point: &[PW::Scalar],
	multiplier_witness_ctr: impl FnOnce(&[PW::Scalar]) -> Result<MultilinearWitness<'a, PW>, Error>,
	backend: Backend,
) -> Result<BivariateSumcheckWitness<'a, PW>, Error>
where
	PW: PackedField + WithUnderlier,
	PW::Scalar: TowerField,
	PW::Underlier: PackScalar<PW::Scalar, Packed = PW>,
	Backend: ComputationBackend,
{
	let ProjectedBivariateMeta {
		inner_id,
		projected_id,
		multiplier_id,
		projected_n_vars,
	} = meta;

	let inner_multilin = witness_index.get_multilin_poly(inner_id)?;

	let (projected_inner_multilin, projected_eval_point) = if let Some(projected_id) = projected_id
	{
		let query = memoized_queries.full_query(&wf_eval_point[projected_n_vars..], backend)?;
		// upcast_arc_dyn() doesn't compile, but an explicit Arc::new() does compile. Beats me.
		let projected: Arc<dyn MultilinearPoly<PW> + Send + Sync> =
			Arc::new(inner_multilin.evaluate_partial_high(query.to_ref())?);
		witness_index.update_multilin_poly(vec![(projected_id, projected.clone())])?;

		(projected, &wf_eval_point[..projected_n_vars])
	} else {
		(inner_multilin, wf_eval_point)
	};

	if !witness_index.has(multiplier_id) {
		witness_index.update_multilin_poly(vec![(
			multiplier_id,
			multiplier_witness_ctr(projected_eval_point)?,
		)])?;
	}

	let multiplier_multilin = witness_index
		.get_multilin_poly(multiplier_id)
		.expect("multilinear forcibly created if absent")
		.clone();

	let witness = MultilinearComposite::new(
		multiplier_multilin.n_vars(),
		BivariateProduct,
		vec![projected_inner_multilin, multiplier_multilin],
	)?;

	Ok(witness)
}

struct MemoizedQuery<P: PackedField, Backend: ComputationBackend> {
	eval_point: Vec<P::Scalar>,
	query: MultilinearQuery<P, Backend>,
}

pub struct MemoizedQueries<P: PackedField, Backend: ComputationBackend> {
	memo: Vec<MemoizedQuery<P, Backend>>,
}

impl<P: PackedField, Backend: ComputationBackend> MemoizedQueries<P, Backend> {
	#[allow(clippy::new_without_default)]
	pub fn new() -> Self {
		Self { memo: Vec::new() }
	}

	#[instrument(skip_all)]
	pub fn full_query(
		&mut self,
		eval_point: &[P::Scalar],
		backend: Backend,
	) -> Result<&MultilinearQuery<P, Backend>, Error> {
		if let Some(index) = self
			.memo
			.iter()
			.position(|memo_query| memo_query.eval_point.as_slice() == eval_point)
		{
			let query = &self.memo[index].query;
			return Ok(query);
		}

		let wf_query = MultilinearQuery::with_full_query(eval_point, backend)?;
		self.memo.push(MemoizedQuery {
			eval_point: eval_point.to_vec(),
			query: wf_query,
		});

		let query = &self
			.memo
			.last()
			.expect("pushed query immediately above")
			.query;
		Ok(query)
	}
}

#[cfg(test)]
mod tests {
	use super::*;

	#[test]
	fn test_compute_common_suffix_len() {
		let tests = vec![
			(vec![], 0),
			(vec![vec![1, 2, 3]], 3),
			(vec![vec![1, 2, 3], vec![2, 3]], 2),
			(vec![vec![1, 2, 3], vec![2, 3], vec![3]], 1),
			(vec![vec![1, 2, 3], vec![4, 2, 3], vec![6, 5, 3]], 1),
			(vec![vec![1, 2, 3], vec![1, 2, 3], vec![1, 2, 3]], 3),
			(vec![vec![1, 2, 3], vec![2, 3, 4], vec![3, 4, 5]], 0),
		];
		for test in tests {
			let eval_points = test.0.iter().map(|x| x.as_slice());
			let expected = test.1;
			let got = compute_common_suffix_len(eval_points);
			assert_eq!(got, expected);
		}
	}
}