1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
// Copyright 2024 Ulvetanna Inc.

use super::{
	error::{Error, VerificationError},
	evalcheck::{
		BatchCommittedEvalClaims, CommittedEvalClaim, EvalcheckClaim, EvalcheckMultilinearClaim,
		EvalcheckProof,
	},
	subclaims::{packed_sumcheck_meta, projected_bivariate_claim, shifted_sumcheck_meta},
};
use crate::{
	oracle::{MultilinearOracleSet, MultilinearPolyOracle, ProjectionVariant},
	protocols::sumcheck::SumcheckClaim,
};
use binius_field::{util::inner_product_unchecked, TowerField};
use binius_math::extrapolate_line_scalar;
use getset::{Getters, MutGetters};
use tracing::instrument;

/// A mutable verifier state.
///
/// Can be persisted across [`EvalcheckVerifier::verify`] invocations. Accumulates
/// `new_sumchecks` bivariate sumcheck instances, as well as holds mutable references to
/// the trace (to which new oracles & multilinears may be added during verification)
#[derive(Getters, MutGetters)]
pub struct EvalcheckVerifier<'a, F: TowerField> {
	pub(crate) oracles: &'a mut MultilinearOracleSet<F>,

	#[getset(get = "pub", get_mut = "pub")]
	pub(crate) batch_committed_eval_claims: BatchCommittedEvalClaims<F>,

	#[get = "pub"]
	new_sumcheck_claims: Vec<SumcheckClaim<F>>,
}

impl<'a, F: TowerField> EvalcheckVerifier<'a, F> {
	/// Create a new verifier state from a mutable reference to the oracle set
	/// (it needs to be mutable because `new_sumcheck` reduction may add new
	/// oracles & multilinears)
	pub fn new(oracles: &'a mut MultilinearOracleSet<F>) -> Self {
		let new_sumcheck_claims = Vec::new();
		let batch_committed_eval_claims =
			BatchCommittedEvalClaims::new(&oracles.committed_batches());

		Self {
			oracles,
			batch_committed_eval_claims,
			new_sumcheck_claims,
		}
	}

	/// A helper method to move out the set of reduced claims
	pub fn take_new_sumchecks(&mut self) -> Vec<SumcheckClaim<F>> {
		std::mem::take(&mut self.new_sumcheck_claims)
	}

	/// Verify an evalcheck claim.
	///
	/// See [`EvalcheckProver::prove`](`super::prove::EvalcheckProver::prove`) docs for comments.
	#[instrument(skip_all, name = "EvalcheckVerifierState::verify", level = "debug")]
	pub fn verify(
		&mut self,
		evalcheck_claim: EvalcheckClaim<F>,
		evalcheck_proof: EvalcheckProof<F>,
	) -> Result<(), Error> {
		let EvalcheckClaim {
			poly: composite,
			eval_point,
			eval,
			is_random_point,
		} = evalcheck_claim;

		let subproofs = match evalcheck_proof {
			EvalcheckProof::Composite { subproofs } => subproofs,
			_ => return Err(VerificationError::SubproofMismatch.into()),
		};

		if subproofs.len() != composite.n_multilinears() {
			return Err(VerificationError::SubproofMismatch.into());
		}

		// Verify the evaluation of the composition function over the claimed evaluations
		let evals = subproofs.iter().map(|(eval, _)| *eval).collect::<Vec<_>>();
		let actual_eval = composite.composition().evaluate(&evals)?;
		if actual_eval != eval {
			return Err(VerificationError::incorrect_composite_poly_evaluation(composite).into());
		}

		subproofs
			.into_iter()
			.zip(composite.inner_polys().into_iter())
			.try_for_each(|((eval, subproof), suboracle)| {
				self.verify_multilinear_subclaim(
					eval,
					subproof,
					suboracle,
					&eval_point,
					is_random_point,
				)
			})?;

		Ok(())
	}

	fn verify_multilinear(
		&mut self,
		evalcheck_claim: EvalcheckMultilinearClaim<F>,
		evalcheck_proof: EvalcheckProof<F>,
	) -> Result<(), Error> {
		let EvalcheckMultilinearClaim {
			poly: multilinear,
			mut eval_point,
			eval,
			is_random_point,
		} = evalcheck_claim;

		match multilinear {
			MultilinearPolyOracle::Transparent { id, inner, name } => {
				match evalcheck_proof {
					EvalcheckProof::Transparent => {}
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				let actual_eval = inner.poly().evaluate(&eval_point)?;
				if actual_eval != eval {
					return Err(VerificationError::IncorrectEvaluation(
						name.unwrap_or(id.to_string()),
					)
					.into());
				}
			}

			MultilinearPolyOracle::Committed { id, .. } => {
				match evalcheck_proof {
					EvalcheckProof::Committed => {}
					_ => return Err(VerificationError::SubproofMismatch.into()),
				}

				let subclaim = CommittedEvalClaim {
					id,
					eval_point,
					eval,
					is_random_point,
				};

				self.batch_committed_eval_claims.insert(subclaim);
			}

			MultilinearPolyOracle::Repeating { inner, .. } => {
				let subproof = match evalcheck_proof {
					EvalcheckProof::Repeating(subproof) => subproof,
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				let n_vars = inner.n_vars();
				let subclaim = EvalcheckMultilinearClaim {
					poly: *inner,
					eval_point: eval_point[..n_vars].to_vec(),
					eval,
					is_random_point,
				};

				self.verify_multilinear(subclaim, *subproof)?;
			}

			MultilinearPolyOracle::Interleaved {
				id,
				poly0,
				poly1,
				name,
			} => {
				let (eval1, eval2, subproof1, subproof2) = match evalcheck_proof {
					EvalcheckProof::Interleaved {
						eval1,
						eval2,
						subproof1,
						subproof2,
					} => (eval1, eval2, subproof1, subproof2),
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				// Verify the evaluation of the interleaved function over the claimed evaluations
				let subclaim_eval_point = &eval_point[1..];
				let actual_eval = extrapolate_line_scalar::<F, F>(eval1, eval2, eval_point[0]);
				if actual_eval != eval {
					return Err(VerificationError::IncorrectEvaluation(
						name.unwrap_or(id.to_string()),
					)
					.into());
				}
				self.verify_multilinear_subclaim(
					eval1,
					*subproof1,
					*poly0,
					subclaim_eval_point,
					is_random_point,
				)?;
				self.verify_multilinear_subclaim(
					eval2,
					*subproof2,
					*poly1,
					subclaim_eval_point,
					is_random_point,
				)?;
			}

			MultilinearPolyOracle::Merged {
				id,
				poly0,
				poly1,
				name,
			} => {
				let (eval1, eval2, subproof1, subproof2) = match evalcheck_proof {
					EvalcheckProof::Merged {
						eval1,
						eval2,
						subproof1,
						subproof2,
					} => (eval1, eval2, subproof1, subproof2),
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				// Verify the evaluation of the merged function over the claimed evaluations
				let n_vars = poly1.n_vars();
				let subclaim_eval_point = &eval_point[..n_vars];
				let actual_eval = extrapolate_line_scalar::<F, F>(eval1, eval2, eval_point[n_vars]);
				if actual_eval != eval {
					return Err(VerificationError::IncorrectEvaluation(
						name.unwrap_or(id.to_string()),
					)
					.into());
				}

				self.verify_multilinear_subclaim(
					eval1,
					*subproof1,
					*poly0,
					subclaim_eval_point,
					is_random_point,
				)?;
				self.verify_multilinear_subclaim(
					eval2,
					*subproof2,
					*poly1,
					subclaim_eval_point,
					is_random_point,
				)?;
			}

			MultilinearPolyOracle::Projected { projected, .. } => {
				let (inner, values) = (projected.inner(), projected.values());
				let eval_point = match projected.projection_variant() {
					ProjectionVariant::LastVars => {
						eval_point.extend(values);
						eval_point
					}
					ProjectionVariant::FirstVars => {
						values.iter().cloned().chain(eval_point).collect()
					}
				};

				let new_claim = EvalcheckMultilinearClaim {
					poly: *inner.clone(),
					eval_point,
					eval,
					is_random_point,
				};

				self.verify_multilinear(new_claim, evalcheck_proof)?;
			}

			MultilinearPolyOracle::Shifted { shifted, .. } => {
				match evalcheck_proof {
					EvalcheckProof::Shifted => {}
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				let meta =
					shifted_sumcheck_meta(self.oracles, &shifted, eval_point.as_slice(), None)?;
				let sumcheck_claim = projected_bivariate_claim(self.oracles, meta, eval)?;
				self.new_sumcheck_claims.push(sumcheck_claim);
			}

			MultilinearPolyOracle::Packed { packed, .. } => {
				match evalcheck_proof {
					EvalcheckProof::Packed => {}
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				let meta = packed_sumcheck_meta(self.oracles, &packed, eval_point.as_slice())?;
				let sumcheck_claim = projected_bivariate_claim(self.oracles, meta, eval)?;
				self.new_sumcheck_claims.push(sumcheck_claim);
			}

			MultilinearPolyOracle::LinearCombination {
				id,
				linear_combination,
				name,
			} => {
				let subproofs = match evalcheck_proof {
					EvalcheckProof::Composite { subproofs } => subproofs,
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				if subproofs.len() != linear_combination.n_polys() {
					return Err(VerificationError::SubproofMismatch.into());
				}

				// Verify the evaluation of the linear combination over the claimed evaluations
				let actual_eval = linear_combination.offset()
					+ inner_product_unchecked::<F, F>(
						subproofs.iter().map(|(eval, _)| *eval),
						linear_combination.coefficients(),
					);

				if actual_eval != eval {
					return Err(VerificationError::IncorrectEvaluation(
						name.unwrap_or(id.to_string()),
					)
					.into());
				}

				subproofs
					.into_iter()
					.zip(linear_combination.polys())
					.try_for_each(|((eval, subproof), suboracle)| {
						self.verify_multilinear_subclaim(
							eval,
							subproof,
							suboracle.clone(),
							&eval_point,
							is_random_point,
						)
					})?;
			}
			MultilinearPolyOracle::ZeroPadded {
				id, inner, name, ..
			} => {
				let (inner_eval, subproof) = match evalcheck_proof {
					EvalcheckProof::ZeroPadded(eval, subproof) => (eval, subproof),
					_ => return Err(VerificationError::SubproofMismatch.into()),
				};

				let inner_n_vars = inner.n_vars();

				let (subclaim_eval_point, zs) = eval_point.split_at(inner_n_vars);

				let mut extrapolate_eval = inner_eval;

				for z in zs {
					extrapolate_eval =
						extrapolate_line_scalar::<F, F>(F::ZERO, extrapolate_eval, *z);
				}

				if extrapolate_eval != eval {
					return Err(VerificationError::IncorrectEvaluation(
						name.unwrap_or(id.to_string()),
					)
					.into());
				}

				self.verify_multilinear_subclaim(
					inner_eval,
					*subproof,
					*inner,
					subclaim_eval_point,
					is_random_point,
				)?;
			}
		}

		Ok(())
	}

	fn verify_multilinear_subclaim(
		&mut self,
		eval: F,
		subproof: EvalcheckProof<F>,
		poly: MultilinearPolyOracle<F>,
		eval_point: &[F],
		is_random_point: bool,
	) -> Result<(), Error> {
		let subclaim = EvalcheckMultilinearClaim {
			poly,
			eval_point: eval_point.to_vec(),
			eval,
			is_random_point,
		};
		self.verify_multilinear(subclaim, subproof)
	}
}