1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
// Copyright 2024 Ulvetanna Inc.

use super::{
	gkr_gpa::{GrandProductBatchProveOutput, LayerClaim},
	Error, GrandProductBatchProof, GrandProductClaim, GrandProductWitness,
};
use crate::{
	composition::BivariateProduct,
	oracle::MultilinearPolyOracle,
	polynomial::{MultilinearComposite, MultilinearExtension, MultilinearPoly, MultilinearQuery},
	protocols::{
		evalcheck::EvalcheckMultilinearClaim,
		gkr_gpa::gkr_gpa::BatchLayerProof,
		gkr_sumcheck::{
			self, GkrSumcheckBatchProof, GkrSumcheckBatchProveOutput, GkrSumcheckClaim,
			GkrSumcheckWitness,
		},
	},
	witness::MultilinearWitness,
};
use binius_field::{ExtensionField, Field, PackedExtension, PackedField, TowerField};
use binius_hal::ComputationBackend;
use binius_math::{extrapolate_line_scalar, EvaluationDomainFactory};
use binius_utils::{
	bail,
	sorting::{stable_sort, unsort},
};
use p3_challenger::{CanObserve, CanSample};
use std::sync::Arc;
use tracing::instrument;

type MultilinWitnessPair<'a, P> = (MultilinearWitness<'a, P>, MultilinearWitness<'a, P>);

/// Proves batch reduction turning each GrandProductClaim into an EvalcheckMultilinearClaim
///
/// REQUIRES:
/// * witnesses and claims are of the same length
/// * The ith witness corresponds to the ith claim
#[instrument(skip_all, name = "gkr_gpa::batch_prove", level = "debug")]
pub fn batch_prove<'a, F, PW, DomainField, Challenger, Backend>(
	witnesses: impl IntoIterator<Item = GrandProductWitness<'a, PW>>,
	claims: impl IntoIterator<Item = GrandProductClaim<F>>,
	evaluation_domain_factory: impl EvaluationDomainFactory<DomainField>,
	mut challenger: Challenger,
	backend: Backend,
) -> Result<GrandProductBatchProveOutput<F>, Error>
where
	F: TowerField + From<PW::Scalar>,
	PW: PackedExtension<DomainField>,
	DomainField: Field,
	PW::Scalar: Field + From<F> + ExtensionField<DomainField>,
	Challenger: CanSample<F> + CanObserve<F>,
	Backend: ComputationBackend,
{
	//  Ensure witnesses and claims are of the same length, zip them together
	// 	For each witness-claim pair, create GrandProductProver
	let witness_vec = witnesses.into_iter().collect::<Vec<_>>();
	let claim_vec = claims.into_iter().collect::<Vec<_>>();

	let n_claims = claim_vec.len();
	if n_claims == 0 {
		return Ok(GrandProductBatchProveOutput::default());
	}
	if witness_vec.len() != n_claims {
		bail!(Error::MismatchedWitnessClaimLength);
	}

	// Create a vector of GrandProductProverStates
	let provers_vec = witness_vec
		.into_iter()
		.zip(claim_vec.into_iter())
		.map(|(witness, claim)| GrandProductProverState::new(&claim, witness, backend.clone()))
		.collect::<Result<Vec<_>, _>>()?;

	let (original_indices, mut sorted_provers) =
		stable_sort(provers_vec, |prover| prover.input_vars(), true);

	let max_n_vars = sorted_provers
		.first()
		.expect("sorted_provers is not empty by invariant")
		.input_vars();

	let mut batch_layer_proofs = Vec::with_capacity(max_n_vars);
	let mut reverse_sorted_evalcheck_multilinear_claims = Vec::with_capacity(n_claims);

	for layer_no in 0..max_n_vars {
		// Step 1: Process finished provers
		process_finished_provers(
			n_claims,
			layer_no,
			&mut sorted_provers,
			&mut reverse_sorted_evalcheck_multilinear_claims,
		)?;

		// Now we must create the batch layer proof for the kth to k+1th layer reduction

		// Step 2: Create sumcheck batch proof
		let (gkr_sumcheck_batch_proof, sumcheck_challenge) = if layer_no == 0 {
			let sorted_evals = sorted_provers
				.iter()
				.map(|prover| prover.current_layer_claim.eval)
				.collect::<Vec<F>>();
			// Need to sample batching coefficients for prover-verifier challenger consistency
			let _batching_coeffs = challenger.sample_vec(sorted_evals.len() - 1);
			let proof = GkrSumcheckBatchProof {
				rounds: vec![],
				sorted_evals,
			};
			let sumcheck_challenge = vec![];
			(proof, sumcheck_challenge)
		} else {
			let sumcheck_claims_and_witnesses = sorted_provers
				.iter_mut()
				.map(|p| p.stage_gkr_sumcheck_claims_and_witnesses())
				.collect::<Result<Vec<_>, _>>()?;
			let GkrSumcheckBatchProveOutput {
				proof,
				reduced_claims,
			} = gkr_sumcheck::batch_prove(
				sumcheck_claims_and_witnesses,
				evaluation_domain_factory.clone(),
				|_| 1, // TODO better switchover fn
				&mut challenger,
				backend.clone(),
			)?;
			let sumcheck_challenge = reduced_claims[0].eval_point.clone();
			(proof, sumcheck_challenge)
		};

		// Step 3: Get (and observe) zero and one evaluations of the (k+1)th layer-multilinear
		let (zero_evals, one_evals) = sorted_provers
			.iter_mut()
			.map(|p| p.advise_sumcheck_prove(&sumcheck_challenge))
			.collect::<Result<Vec<_>, _>>()?
			.into_iter()
			.unzip::<_, _, Vec<F>, Vec<F>>();
		challenger.observe_slice(&zero_evals);
		challenger.observe_slice(&one_evals);

		// Step 4: Sample a challenge for the next layer
		let gkr_challenge = challenger.sample();

		// Step 5: Finalize each prover to update its internal current_layer_claim
		for ((prover, zero_eval), one_eval) in sorted_provers
			.iter_mut()
			.zip(zero_evals.iter())
			.zip(one_evals.iter())
		{
			prover.finalize_batch_layer_proof(
				*zero_eval,
				*one_eval,
				sumcheck_challenge.clone(),
				gkr_challenge,
			)?;
		}

		// Step 6: Create the BatchLayerProof and push it to batch_layer_proofs
		let batch_layer_proof = BatchLayerProof {
			gkr_sumcheck_batch_proof,
			zero_evals,
			one_evals,
		};
		batch_layer_proofs.push(batch_layer_proof);
	}
	process_finished_provers(
		n_claims,
		max_n_vars,
		&mut sorted_provers,
		&mut reverse_sorted_evalcheck_multilinear_claims,
	)?;

	debug_assert!(sorted_provers.is_empty());
	debug_assert_eq!(reverse_sorted_evalcheck_multilinear_claims.len(), n_claims);

	reverse_sorted_evalcheck_multilinear_claims.reverse();
	let sorted_evalcheck_multilinear_claims = reverse_sorted_evalcheck_multilinear_claims;

	let evalcheck_multilinear_claims =
		unsort(original_indices, sorted_evalcheck_multilinear_claims);

	Ok(GrandProductBatchProveOutput {
		evalcheck_multilinear_claims,
		proof: GrandProductBatchProof { batch_layer_proofs },
	})
}

fn process_finished_provers<F, PW, Backend>(
	n_claims: usize,
	layer_no: usize,
	sorted_provers: &mut Vec<GrandProductProverState<'_, F, PW, Backend>>,
	reverse_sorted_evalcheck_multilinear_claims: &mut Vec<EvalcheckMultilinearClaim<F>>,
) -> Result<(), Error>
where
	PW: PackedField,
	F: Field + From<PW::Scalar>,
	PW::Scalar: Field + From<F>,
	Backend: ComputationBackend,
{
	while !sorted_provers.is_empty() && sorted_provers.last().unwrap().input_vars() == layer_no {
		debug_assert!(layer_no > 0);
		let finished_prover = sorted_provers.pop().unwrap();
		let evalcheck_claim = finished_prover.finalize()?;
		reverse_sorted_evalcheck_multilinear_claims.push(evalcheck_claim);
		debug_assert_eq!(
			sorted_provers.len() + reverse_sorted_evalcheck_multilinear_claims.len(),
			n_claims
		);
	}
	Ok(())
}

/// GKR-based Grand Product Argument protocol prover state
///
/// Coordinates the proving of a grand product claim before and after
/// the sumcheck-based layer reductions.
#[derive(Debug)]
struct GrandProductProverState<'a, F, PW, Backend>
where
	F: Field + From<PW::Scalar>,
	PW: PackedField,
	PW::Scalar: Field + From<F>,
	Backend: ComputationBackend,
{
	// Input polynomial oracle
	poly: MultilinearPolyOracle<F>,
	// Layers of the product circuit as multilinear polynomials
	// The ith element is the ith layer of the product circuit
	layers: Vec<MultilinearWitness<'a, PW>>,
	// The ith element consists of a tuple of the
	// first and second halves of the (i+1)th layer of the product circuit
	next_layer_halves: Vec<MultilinWitnessPair<'a, PW>>,
	// The current claim about a layer multilinear of the product circuit
	current_layer_claim: LayerClaim<F>,

	backend: Backend,
}

impl<'a, F, PW, Backend> GrandProductProverState<'a, F, PW, Backend>
where
	F: Field + From<PW::Scalar>,
	PW: PackedField,
	PW::Scalar: Field + From<F>,
	Backend: ComputationBackend,
{
	/// Create a new GrandProductProverState
	fn new(
		claim: &GrandProductClaim<F>,
		witness: GrandProductWitness<'a, PW>,
		backend: Backend,
	) -> Result<Self, Error> {
		let n_vars = claim.poly.n_vars();
		if n_vars != witness.n_vars() || witness.grand_product_evaluation() != claim.product.into()
		{
			bail!(Error::ProverClaimWitnessMismatch);
		}

		// Build multilinear polynomials from circuit evaluations
		let n_layers = n_vars + 1;
		let next_layer_halves = (1..n_layers)
			.map(|i| {
				let (left_evals, right_evals) = witness.ith_layer_eval_halves(i)?;
				let left = MultilinearExtension::from_values_generic(Arc::from(left_evals))?
					.specialize_arc_dyn();
				let right = MultilinearExtension::from_values_generic(Arc::from(right_evals))?
					.specialize_arc_dyn();
				Ok((left, right))
			})
			.collect::<Result<Vec<_>, Error>>()?;

		let layers = (0..n_layers)
			.map(|i| {
				let ith_layer_evals = witness.ith_layer_evals(i)?;
				let mle = MultilinearExtension::from_values_generic(Arc::from(ith_layer_evals))?
					.specialize_arc_dyn();
				Ok(mle)
			})
			.collect::<Result<Vec<_>, Error>>()?;

		debug_assert_eq!(next_layer_halves.len(), n_vars);
		debug_assert_eq!(layers.len(), n_vars + 1);

		// Initialize Layer Claim
		let layer_claim = LayerClaim {
			eval_point: vec![],
			eval: claim.product,
		};

		// Return new GrandProductProver and the common product
		Ok(GrandProductProverState {
			poly: claim.poly.clone(),
			next_layer_halves,
			layers,
			current_layer_claim: layer_claim,
			backend,
		})
	}

	fn input_vars(&self) -> usize {
		self.poly.n_vars()
	}

	fn current_layer_no(&self) -> usize {
		self.current_layer_claim.eval_point.len()
	}

	// Create GKR sumcheck prover
	#[allow(clippy::type_complexity)]
	fn stage_gkr_sumcheck_claims_and_witnesses(
		&self,
	) -> Result<
		(
			GkrSumcheckClaim<F>,
			GkrSumcheckWitness<PW, BivariateProduct, MultilinearWitness<'a, PW>>,
		),
		Error,
	> {
		if self.current_layer_no() >= self.input_vars() {
			bail!(Error::TooManyRounds);
		}

		// Witness
		let current_layer = self.layers[self.current_layer_no()].clone();
		let (left_half, right_half) = self.next_layer_halves[self.current_layer_no()].clone();
		let poly = MultilinearComposite::<PW, _, _>::new(
			self.current_layer_no(),
			BivariateProduct,
			vec![left_half, right_half],
		)?;
		let witness = GkrSumcheckWitness {
			poly,
			current_layer,
		};

		// Claim
		let claim = GkrSumcheckClaim {
			n_vars: self.current_layer_no(),
			degree: BivariateProduct.degree(),
			sum: self.current_layer_claim.eval,
			r: self.current_layer_claim.eval_point.clone(),
		};

		Ok((claim, witness))
	}

	// Give the (k+1)th layer evaluations at the evaluation points (r'_k, 0) and (r'_k, 1)
	fn advise_sumcheck_prove(&self, sumcheck_eval_point: &[F]) -> Result<(F, F), Error> {
		if self.current_layer_no() >= self.input_vars() {
			bail!(Error::TooManyRounds);
		}

		let query = sumcheck_eval_point
			.iter()
			.cloned()
			.map(Into::into)
			.collect::<Vec<_>>();
		let multilinear_query = MultilinearQuery::with_full_query(&query, self.backend.clone())?;

		let zero_eval = self.next_layer_halves[self.current_layer_no()]
			.0
			.evaluate(multilinear_query.to_ref())?;
		let one_eval = self.next_layer_halves[self.current_layer_no()]
			.1
			.evaluate(multilinear_query.to_ref())?;

		Ok((zero_eval.into(), one_eval.into()))
	}

	fn finalize_batch_layer_proof(
		&mut self,
		zero_eval: F,
		one_eval: F,
		sumcheck_challenge: Vec<F>,
		gkr_challenge: F,
	) -> Result<(), Error> {
		if self.current_layer_no() >= self.input_vars() {
			bail!(Error::TooManyRounds);
		}

		let new_eval = extrapolate_line_scalar(zero_eval, one_eval, gkr_challenge);
		let mut layer_challenge = sumcheck_challenge;
		layer_challenge.push(gkr_challenge);

		self.current_layer_claim = LayerClaim {
			eval_point: layer_challenge,
			eval: new_eval,
		};
		Ok(())
	}

	fn finalize(self) -> Result<EvalcheckMultilinearClaim<F>, Error> {
		if self.current_layer_no() != self.input_vars() {
			bail!(Error::PrematureFinalize);
		}

		let evalcheck_multilinear_claim = EvalcheckMultilinearClaim {
			poly: self.poly,
			eval_point: self.current_layer_claim.eval_point,
			eval: self.current_layer_claim.eval,
			is_random_point: true,
		};
		Ok(evalcheck_multilinear_claim)
	}
}