`pub struct RoundProof<F: Field>(/* private fields */);`

## Expand description

A sumcheck round proof is a univariate polynomial in monomial basis with the coefficient of the highest-degree term truncated off.

Since the verifier knows the claimed sum of the polynomial values at the points 0 and 1, the high-degree term coefficient can be easily recovered. Truncating the coefficient off saves a small amount of proof data.

## Implementations§

source§### impl<F: Field> RoundProof<F>

### impl<F: Field> RoundProof<F>

source#### pub fn recover(self, sum: F) -> RoundCoeffs<F>

#### pub fn recover(self, sum: F) -> RoundCoeffs<F>

Recovers all univariate polynomial coefficients from the compressed round proof.

The prover has sent coefficients for the purported ith round polynomial $r_i(X) = \sum_{j=0}^d a_j * X^j$. However, the prover has not sent the highest degree coefficient $a_d$. The verifier will need to recover this missing coefficient.

Let $s$ denote the current round’s claimed sum. The verifier expects the round polynomial $r_i$ to satisfy the identity $s = r_i(0) + r_i(1)$. Using $r_i(0) = a_0$ $r_i(1) = \sum_{j=0}^d a_j$ There is a unique $a_d$ that allows $r_i$ to satisfy the above identity. Specifically $a_d = s - a_0 - \sum_{j=0}^{d-1} a_j$

Not sending the whole round polynomial is an optimization. In the unoptimized version of the protocol, the verifier will halt and reject if given a round polynomial that does not satisfy the above identity.

source#### pub fn isomorphic<FI: Field + From<F>>(self) -> RoundProof<FI>

#### pub fn isomorphic<FI: Field + From<F>>(self) -> RoundProof<FI>

Representation in an isomorphic field

## Trait Implementations§

source§### impl<F: Clone + Field> Clone for RoundProof<F>

### impl<F: Clone + Field> Clone for RoundProof<F>

source§#### fn clone(&self) -> RoundProof<F>

#### fn clone(&self) -> RoundProof<F>

1.6.0 · source§#### fn clone_from(&mut self, source: &Self)

#### fn clone_from(&mut self, source: &Self)

`source`

. Read moresource§### impl<F: Default + Field> Default for RoundProof<F>

### impl<F: Default + Field> Default for RoundProof<F>

source§#### fn default() -> RoundProof<F>

#### fn default() -> RoundProof<F>

### impl<F: Eq + Field> Eq for RoundProof<F>

### impl<F: Field> StructuralPartialEq for RoundProof<F>

## Auto Trait Implementations§

### impl<F> Freeze for RoundProof<F>

### impl<F> RefUnwindSafe for RoundProof<F>

### impl<F> Send for RoundProof<F>

### impl<F> Sync for RoundProof<F>

### impl<F> Unpin for RoundProof<F>

### impl<F> UnwindSafe for RoundProof<F>

## Blanket Implementations§

source§### impl<T> BorrowMut<T> for Twhere
T: ?Sized,

### impl<T> BorrowMut<T> for Twhere
T: ?Sized,

source§#### fn borrow_mut(&mut self) -> &mut T

#### fn borrow_mut(&mut self) -> &mut T

source§### impl<T> CloneToUninit for Twhere
T: Clone,

### impl<T> CloneToUninit for Twhere
T: Clone,

source§#### unsafe fn clone_to_uninit(&self, dst: *mut T)

#### unsafe fn clone_to_uninit(&self, dst: *mut T)

`clone_to_uninit`

)§### impl<T> Instrument for T

### impl<T> Instrument for T

§#### fn instrument(self, span: Span) -> Instrumented<Self>

#### fn instrument(self, span: Span) -> Instrumented<Self>

§#### fn in_current_span(self) -> Instrumented<Self>

#### fn in_current_span(self) -> Instrumented<Self>

source§### impl<T> IntoEither for T

### impl<T> IntoEither for T

source§#### fn into_either(self, into_left: bool) -> Either<Self, Self>

#### fn into_either(self, into_left: bool) -> Either<Self, Self>

`self`

into a `Left`

variant of `Either<Self, Self>`

if `into_left`

is `true`

.
Converts `self`

into a `Right`

variant of `Either<Self, Self>`

otherwise. Read moresource§#### fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>

#### fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>

`self`

into a `Left`

variant of `Either<Self, Self>`

if `into_left(&self)`

returns `true`

.
Converts `self`

into a `Right`

variant of `Either<Self, Self>`

otherwise. Read more